A residual a posteriori error estimate for the Virtual Element Method

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A posteriori error estimate for the mixed finite element method

A computable error bound for mixed finite element methods is established in the model case of the Poisson–problem to control the error in the H(div,Ω) ×L2(Ω)–norm. The reliable and efficient a posteriori error estimate applies, e.g., to Raviart–Thomas, Brezzi-Douglas-Marini, and Brezzi-DouglasFortin-Marini elements. 1. Mixed method for the Poisson problem Mixed finite element methods are well-e...

متن کامل

Residual-based a posteriori error estimate for a mixed Reißner-Mindlin plate finite element method

Reliable and efficient residual-based a posteriori error estimates are established for the stabilised locking-free finite element methods for the Reissner-Mindlin plate model. The error is estimated by a computable error estimator from above and below up to multiplicative constants that do neither depend on the mesh-size nor on the plate’s thickness and are uniform for a wide range of stabilisa...

متن کامل

A posteriori error estimates for the virtual element method

An posteriori error analysis for the virtual element method (VEM) applied to general elliptic problems is presented. The resulting error estimator is of residual-type and applies on very general polygonal/polyhedral meshes. The estimator is fully computable as it relies only on quantities available from the VEM solution, namely its degrees of freedom and element-wise polynomial projection. Uppe...

متن کامل

A posteriori error estimate in quantities of interest for the finite element heterogeneous multiscale method

We present an a posteriori error analysis in quantities of interest for elliptic homogenization problems discretized by the finite element heterogeneous multiscale method. The multiscale method is based on a macro-to-micro formulation, where the macroscopic physical problem is discretized in a macroscopic finite element space and the missing macroscopic data is recovered on-the-fly using the so...

متن کامل

An a posteriori error estimate and a Comparison Theorem for the nonconforming P 1 element

A posteriori error estimates for the nonconforming P1 element are easily determined by the hypercircle method via Marini’s observation on the relation to the mixed method of Raviart–Thomas. Another tool is Ainsworth’s application of the hypercircle method to mixed methods. The relation on the finite element solutions is also extended to an a priori relation of the errors, and the errors of four...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Models and Methods in Applied Sciences

سال: 2017

ISSN: 0218-2025,1793-6314

DOI: 10.1142/s0218202517500233